
International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013                                                                                         1 
ISSN 2229-5518   
 

IJSER © 2013 
http://www.ijser.org  

Single Network Structure for Stuck-at and Bridging 
Fault Analysis and Diagnosis of Exclusive-OR 

Sum of Products Reed-Muller Canonical Circuits 
Geetha V., Devarajan N. and Neelakantan P. N. 

 

Abstract— In this paper, a testable design with good fault identification capability is used for analysis and diagnosis of AND-bridging and 
double stuck-at  faults in Exclusive-OR Sum of Product Reed-Muller canonical circuits, independent of the function for a given number of 
inputs. Factors of identifiability and distinguishability have been defined and determined. Further, a compact method of representing the 
circuit outputs has been adopted for ease of tabulation and comparison. Simulations of AND-bridging and Double stuck-at  faults for a few 
random functions have been carried out through MATLAB coding. From the test results, it was found that the fault detection for the set of 
random functions was more than 90% for most of the functions except few cases, with just n+5 test vectors compared to 2n test vectors 
required for conventional testing. The location of the fault can also be diagnosed through the output sets.  

Index Terms— Reed-Muller Canonical Form, Exclusive-OR Sum of Products, Testable Realization, AND-bridging fault ,Double stuck-at    
                       fault  
.   

——————————      ——————————  

1 INTRODUCTION                                                                     

THE faults in digital circuits can be classified broadly as 
single stuck-at-faults, multiple stuck-at-faults, stuck-open 
faults, stuck-on faults, bridging faults, path delay faults, 
transient faults etc. Any arbitrary logic function, in general, 
can be expressed in Reed-Muller Canonical (RMC) form as       
F  =  (a0  a1x1*  a2 x2* … anxn*  an+1 x1* x2*   …              
am x1* x2*…xn*)where, xn* can be xn or its complement, an is 
either 0 or 1 and m  =  2n-1.  However, there can be variations 
in such forms. The different types are Fixed Polarity RMC 
(FPRM), Positive Polarity RMC (PPRM), Generalized RMC 
(GRM) and Exclusive-OR Sum-of-Products RMC (ESOP RM). 
The FPRM has a restriction that the variables in any of the 
product terms have to be of the same type namely 
complementary or non-complementary. For PPRM, the 
complementary form of variables is not allowed. The GRM 
may contain both complementary and non-complementary 
types but the combination of the variables should be unique. 
The ESOP form does not have any such restriction. Also the 
ESOP form has the least number of product terms and hence 
needs the least number of AND gates and is very much 
suitable for hardware implementation. 

Extensive research has been carried out in the field of 
testing of digital circuits to reduce the number of input 
vectors. The cardinality of the test vectors proposed by many 
authors becomes prohibitively excessive for large number of 
input variables. It was demonstrated that Single stuck-at fault 
detection can be achieved with only n+5 test vectors [6]. The 
same structure was extended for OR-bridging fault analysis 
and  is explained in [15] and [16]. In this paper, it is shown 
through Matlab simulations  that AND-bridging  and Double 
stuck-at fault detection and diagnosis could also be achieved 
with the same n+5 test vectors considering all input lines, 
control lines and intermediate gate outputs. 
 

Two quantitative indices, called identifiability factor and 
distinguishability factor are considered for comparison of the 
testability nature of given circuits. The identifiability factor is 
defined as the ratio of the number of faults correctly identified 
by the test set to the total number of possible faults of the type 
considered. The existence of faults can be recognized from the 
set of outputs measured which will be different from the fault-
free circuit. The distinguishability factor pertains to the 
identical set of outputs among different faults, but the output 
set of each being very much different from the non-faulty case. 
The existence of even a small percentage of distinguishability 
may not mean the circuit is not reliable, since it is still possible 
to identify the faulty condition of the circuit and take 
appropriate remedial action. The set of binary values for an 
output is converted into its decimal equivalent for 
convenience in comparison and ease of tabulation. 

 

2   LITERATURE SURVEY 
A PPRM network for detection of stuck-at faults with a uni-
versal test set of size n+4, n being the number of data inputs, 
was proposed in [1]. Though quite good for self-testing, the 
method is economical only for the specified form, which obvi-
ously has more number of product terms than the other forms 
in most cases. Multiple stuck-at fault detection for ESOP cir-
cuits was carried out in [2]. However, since the cardinality is  
2n+6+ ∑nCe , e =  0 to j, the order of ESOP expression, the test 
set is not universal and also is too large to be practical for large 
input functions. Stuck-at and bridging faults with a universal 
test set for PPRM network has been reported in [3]. Multiple 
fault detecting GRM realizations was proposed in [4].  
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Reference [5] described an ESOP implementation with a 
universal test set of size n+6 for single stuck-at faults only. In 
[6] it was demonstrated that single stuck-at fault detection can 
be achieved with only n+5 test vectors. It was shown  in [7] 
that 2n+s+3 test vectors are required for single stuck-at fault 
detections in GRM / ESOP circuits while 2n+s vectors are re-
quired for detection of  AND/OR-bridging faults in such cir-
cuits , where s is the number of product terms in the logic 
function. Here too, the test set is not universal as it depends on 
s, the number of product terms of the function. References [8], 
[9] proved that a test sequence of length 2n+8 vectors is suffi-
cient to detect all single stuck-at and bridging faults. Two new 
methods, each with a small modification in this scheme with 
ESOP RMC circuits had been proposed for analysis and diag-
nosis of single stuck-at faults [10], [11].  

In [12],[13],[14], it was demonstrated how the RMC forms 
help in the detection of various digital faults and how to 
determine the best polarity among them. It was proved that 
test vectors for multiple fault detection and diagnosis in 
digital circuits could be generated using Neural Network with 
different training algorithms [15]. Reference [16] proposed a 
new test pattern generation algorithm using Neural Network 
which requires additional gates. The analysis and diagnosis of 
OR-bridging faults in any of the pairs of data and control lines 
and OR-bridging faults including intermediate gate outputs  
of the ESOP RMC circuits was proposed in [17], [18]. This 
paper is an extension of [18] which also analyses the AND-
bridging and double stuck-at faults of the ESOP RMC circuits 
with minimal test vectors. 

. 

3 MATERIALS AND METHODS 

3.1 Network Structure 
The network structure of the scheme is the same as that 
proposed in [6] and is shown in Fig. 1. It comprises a literal 
complementing XOR block, an AND block, an XOR function 
tree block, which implements the required logic function as 
also two additional outputs O1 and O2 obtained through a 
separate AND gate and an OR gate. The actual data inputs to 
the system are x1, x2 …. xn. Additionally, the scheme requires 
four control inputs c1 to c4.  The literal-complementing block 
produces the complements of the literals used in the function. 
Only those literals appearing in complemented form require 
an XOR gate in this block.  

The literals of each product term P1, P2, ..Pm are combined 
through an AND gate and hence the number of AND gates 
required is the same as the number of product terms in the 
logic function. Further, each of the AND gates of this block has 
an additional input from one of the control lines depending on 
the number of gates used in the XOR tree block producing the 
final function F. Finally, all the data and complementary gate 
outputs are applied to a separate AND gate and an OR gate, 
producing auxiliary outputs O1 and O2, to aid in the detection 
of faults which cannot be differentiated by the main function 
output F alone. 

 
 

 
    
        

Fig.1 Generalised Network structure 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.2  Control Input Determination 

 
The required control lines are determined as illustrated 

above (Fig. 2). Draw the XOR gate tree for the required 
product terms of the given function. Assign the numerals 1, 2 
and 3 respectively to the two inputs and the output of the final 
XOR gate producing the function output F. Consider each 
XOR gate connected to the inputs of the final XOR gate 
considered. Assign the outputs of these XOR gates with the 
same numbers as the inputs of the final XOR gate. If the 
output of the XOR gate considered is 1, then assign 2 and 3 to 
its inputs; else if the output is numbered 2, assign 3 and 1 to its 
input. Now consider the next earlier input stage and assign 
the numerals in the similar manner according to the output 
points connected. 

 

3.2 Test Vectors  
The test set has (n+5) vectors; each of the vectors is (n+4) long, 
‘n’ being the number of data inputs. The first four columns of 
the matrix represent the control inputs c1 to c4 while the 
remaining n columns that of the data inputs are x1 to xn. The 
generalized test set is shown in Table 1. 
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TABLE 1 

GENERALIZED TEST SET 
 

 
 
 
 
 

 
 

 

 

 

 

 

3.3  Algorithm 
1. Set up the circuit as in Fig. 1. 
2. Determine and connect the control lines c1 to c4 as              

explained. 
3. Apply the test vectors as given in Table 1, one by one. 
4. For each test vector, determine the fault free outputs F, 

O1 and O2. 
5. Obtain the decimal equivalents of each of the above 

binary output sets.  
6. Simulate the AND-bridging  and double-stuck-at faults 

with various possible combinations of the control 
inputs, data inputs and intermediate gate outputs and 
get the corresponding decimal outputs. 

7. Compare the set of outputs with the predetermined 
fault-free outputs. 

8. If the two output sets match exactly, it implies that a 
fault, if present, is not identifiable or detectable; else, the 
fault is a detectable one. 

9. Repeat steps 4 to 8 for all the ten functions and for the 
specified faults.  

10.  Calculate the identifiability factor and distinguishability 
factor for each type of fault.          

4    RESULTS AND DISCUSSION   
The following ten random functions were considered and 
AND-bridging  and double stuck-at  faults are simulated 
using MATLAB coding and the consolidated results are 
tabulated in Tables 4 and 9. 
F1 =  x1 ⨁ x2x3 ⨁ x1’x2x3 
F2 =  x1x2 ⨁ x2’x3 ⨁ x3’x4 ⨁  x1x2x3 
F3 =  x1’ ⨁ x2x3’x4 ⨁ x3x4’ ⨁ x2’x3 ⨁ x1x4x5 
F4 = x1x2’ ⨁ x2x3x4’ ⨁ x4x5’x6 ⨁ x2x5 ⨁ x2’x5’ ⨁ x3’x2x1 ⨁ x4x6 
F5  =  x1’x2x3 ⨁ x4x5x6 ⨁ x4’x6’x7 ⨁ x3x5x7 
F6 = x1x2’x3 ⨁ x4’x5x6’ ⨁ x7x8’ ⨁ ’ ⨁ x1’x6 ⨁ x3’x4 ⨁ x1x5     
       ⨁  x4x5’ ⨁ x5x7 ⨁ x8x3x1 ⨁ x3x5’x8 

F7 =  x1x2’x3’ ⨁ x4x5’x6 ⨁ x7’x8x9 ⨁ x1’x4’x9’ ⨁ x2x5’ ⨁ x3x5 
F8 =  x1’x2x3’ ⨁ x4’x5’x6 ⨁ x7x8’x9’ ⨁ x10 ⨁ x6’x7 ⨁ x8x10 
F9 =  x1 ⨁ x2’x3x4’ ⨁ x5’x6x7’ ⨁ x8x9x10 ⨁ x10’x11 ⨁ x1x3x9 
F10 = x1’x2 ⨁ x3x4’x5 ⨁ x6x7’x8x9 ⨁ x10x11’x12 ⨁ x1x2x3’⨁ x4’x7 

As an illustration, the three variable function 
F1  =  x1 ⨁ x2x3 ⨁ x1’x2x3 is considered. The network structure 
and the set of test vectors for the function F1 is shown in Fig. 3 
and Table 2 respectively.  

 

 

 

 

 

 
    Fig. 3 Circuit for F =  x1 x2x3 x1’x2x3 

 
TABLE 2   

TEST VECTORS FOR  F =  X1 X2X3 X1’X2X3 

 

 

 

 

 

 

4.1 AND-Bridging Faults 
The bridging faults are considered as a special case of multiple 
faults. A detailed numerical illustration for three variable 
AND-bridging faults is given below. 
Function considered:  F1 = x1 ⨁ x2x3 ⨁ x1’x2x3 
Fault-free output set {F, O1, O2} = {126, 112, 127} 
The outputs of AND-bridging faults at lines c1 in combination 
with c2, c3, c4, x1, x2 , x3, zl1, za1, za2, za3, zx1 and zx2 are 
tabulated in Table 3(a) and 3(b). 
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TABLE 3(a) 
AND-BRIDGING FAULTS INVOLVING C1 FOR FUNCTION F1 

 
 
 
 
 

TABLE 3(b) 

 

 
Total No. of fault location pair combinations 
                          =  (nc+ nx+nzl+nza+nzx) C2 =  13C2 = 78 
Total number of possible bridging faults for the given three 
variable function used is 78. 
From the simulation results it was found that the number of 
unidentifiable faults as 11. 
The Identifiability Factor is                                                    
                                          (78 - 11) / 78*100  =  85.90%. 
 For the given example, the output sets that get 
repeated are as follows: 
{6, 112, 126}  2 times 
{62, 112, 127}  5 times 
{80, 112, 127}  2 times 
{80, 112, 127}  2 times 
{86, 0, 126}  2 times 
{86, 80, 127}  2 times 
{86, 112, 127}  5 times 
{94, 112, 127}  2 times 
{118, 112, 126}  5 times 
{118, 112, 127}  2 times 
{120, 112, 127}  4 times 
{126, 48, 127}  3 times 
{126, 80, 126}  3 times 
{126, 80, 127}  2 times 
Thus totally repetition occurs for 41 fault location 
combinations. Hence overall distinguishability factor is  
  (78 - 41) / 78 *100  =  47.44%. 
However, when the individual cases are considered the 
distinguishability factor can be seen to be appreciably high as 
seen below: 
Same output set of {120, 112, 127} for the following fault 
combinations 
AND-bridging fault at c3, za3 lines 
AND-bridging fault at za1, za3 lines 
AND-bridging fault at za2, zx1 lines 
AND-bridging fault at za2, zx2 lines 
The distinguishability for this set is(78 - 4) / 78 *100 =  94.87%. 
Similarly, the output set {126, 80, 126} occurs 3 times, for 
which the distinguishability factor is (78 - 3) / 78*100  =  
96.15%. 

Further, the location of fault can also be easily diagnosed 
from the output set. For instance if the output set is              
{120, 112, 127} then the fault condition would be one of the 
four cases discussed above involving c3, za1, za2, za3, zx1, zx2 and 
hence those lines only need to be checked.  

Similarly, the fault simulations were carried out for the 
remaining nine random functions and the results are tabulated 
in Table 4. 

 
TABLE 4 

CONSOLIDATED RESULTS FOR AND-BRIDGING FAULTS 
 

 
 
 
 
 

 
 

 

 

 

 

 

4.2  Double Stuck-at Faults 
Double Stuck-at faults can occur quite frequently at the 
adjacent lines of the circuit. The network structure and test 
vectors are the same as above. However, in the test procedure, 
two lines at a time are considered and made to be stuck-at-0 or 
stuck-at-1 and simulated. Since two lines are involved, four 
possible combinations, viz. (0,0), (0,1), (1,0) and (1,1) with one 
of the lines as c1 are simulated and tabulated in Tables 
5(a),5(b),6(a),6(b),7(a),7(b),8(a) and 8(b). 

 
 

TABLE 5(a) 
DOUBLE STUCK-AT FAULTS OUTPUTS FOR FUNCTION F1  

WITH C1 AS ONE OF THE LINES FOR 0,0 COMBINATION 
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TABLE 5(b) 
 
 
 
 
 

TABLE 6(a) 
DOUBLE STUCK-AT FAULTS OUTPUTS FOR FUNCTION F1  

WITH C1 AS ONE OF THE LINES FOR 0,1 COMBINATION 

 

 
 

TABLE 6(b) 

 

 
TABLE 7(a) 

DOUBLE STUCK-AT FAULTS OUTPUTS FOR FUNCTION F1  
WITH C1 AS ONE OF THE LINES FOR 1,0 COMBINATION 

 
 
 

TABLE 7(b) 

 

 
TABLE 8(a) 

DOUBLE STUCK-AT FAULTS OUTPUTS FOR FUNCTION F1  
WITH C1 AS ONE OF THE LINES FOR 1,1 COMBINATION 

 

 
 

TABLE 8(b) 
 

TABLE 9 
CONSOLIDATED RESULTS FOR DOUBLE STUCK-AT FAULTS 

 

 

 

 

 
 
 
 
 
 
      From the test results as given in Tables 4,  and 9 it was 
found that the identifiability factor for the set of random 
functions tested through MATLAB simulation on an average 
was 90%  for AND-bridging faults and almost 100% for 
Double stuck-at faults , with just n+5 test vectors compared to 
2n test vectors required for conventional testing. It was also 
observed  that  the overall distinguishabililty factor was in the 
range of 30-58%, the individual set distinguishability factor 
was more than 94% as explained above. The plot for 
identifiability factor and distinguishability factor for         
AND-bridging and double stuck-at faults are given in Fig.3 
and Fig.4. 

Though the overall distinguishability is small, it does not 
affect the detection capability. Further, the distinguishing ca-
pability for an individual output set can be quite high, as illus-
trated in section 4.1 

 
 

 

 

 
 

 
 
 

 
Fig.3 Percentage  Identifiability Factor 
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Fig.4 Percentage  DistinguishabilityFactor 

 
. 

5    CONCLUSION 
A test set scheme   for the detection   of   AND-bridging  and 
double stuck-at faults for ESOP RMC logic functions have 
been detailed and the simulation results are shown.  The 
results conclude that n+5 test vectors can be used to detect 
double stuck-at, and AND-bridging faults in digital circuits.  
Further, the location can also be diagnosed through the output 
sets. The analysis and diagnosis have been done through 
compact tabulation and two quantification indices considering 
all possible combinations of the data lines, control lines and all 
intermediate gate outputs line pairs. Detection and 
distinguishability factors can be further improved by 
modifying the network structure or using different test 
vectors.  
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